博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ-1273Drainage Ditches(网络流入门题,最大流)
阅读量:5013 次
发布时间:2019-06-12

本文共 3282 字,大约阅读时间需要 10 分钟。

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 41 2 401 4 202 4 202 3 303 4 10

Sample Output

50 代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef long long ll;using namespace std;const int inf = 0x3f3f3f3f;const int maxn = 205;const int maxe = 4 * maxn * maxn;struct MaxFlow { struct Edge { int v, w, nxt; } edge[maxe]; int head[maxn], tot, level[maxn]; void init(){ memset(head,-1,sizeof(head)); tot=0; } void add(int u, int v, int w) { edge[tot].v = v; edge[tot].w = w; edge[tot].nxt = head[u]; head[u] = tot++; edge[tot].v = u; edge[tot].w = 0; edge[tot].nxt = head[v]; head[v] = tot++; } bool bfs(int s, int t) { memset(level, -1, sizeof(level)); queue
q; q.push(s); level[s] = 0; while(!q.empty()) { int u = q.front(); q.pop(); for(int i = head[u]; ~i; i = edge[i].nxt) { if(edge[i].w > 0 && level[edge[i].v] < 0) { level[edge[i].v] = level[u] + 1; q.push(edge[i].v); } } } return level[t] > 0; } int dfs(int u, int t, int f) { if(u == t) return f; for(int i = head[u]; ~i; i = edge[i].nxt) { int v = edge[i].v; if(edge[i].w > 0 && level[v] > level[u]) { int d = dfs(v, t, min(f, edge[i].w)); if(d > 0) { edge[i].w -= d; edge[i ^ 1].w += d; return d; } } } level[u] = -1; return 0; } int solve(int s, int t) { int flow = 0, f; while(bfs(s, t)) { while(f = dfs(s, t, inf)) flow += f; } return flow; }}F; int main(){ int n,m; while(~scanf("%d%d",&m,&n)) { F.init(); for(int i=0;i

 

 

转载于:https://www.cnblogs.com/Staceyacm/p/11325854.html

你可能感兴趣的文章
C:大数相加
查看>>
160. Intersection of Two Linked Lists
查看>>
人生苦短,我用python-- Day11
查看>>
JAVA Bean
查看>>
ehcache memcache redis 三大缓存男高音_转
查看>>
curd_3
查看>>
百度地图API示例之设置地图显示范围
查看>>
Java构造方法、重载及垃圾回收
查看>>
.Net Core AES加密解密
查看>>
Spring Quartz实现任务调度
查看>>
python | 桶排序、冒泡排序、选择排序、去重
查看>>
两个Html页面之间值得传递
查看>>
EasyUI datagrid 的多条件查询
查看>>
Mac升级bash到最新版本
查看>>
利用vagrant打包系统--制作自己的box
查看>>
美女与硬币问题
查看>>
计算几何算法概览 (转)
查看>>
Notepad++的ftp远程编辑功能
查看>>
数据库多对多关联表(Python&MySQL)
查看>>
[实变函数]1.2 集合的运算
查看>>